

Singular Matrix

A matrix A is singular <u>iff</u> its <u>determinant</u> is 0.i.e. |A|=0. For example:

$$A = \begin{bmatrix} 3 & 8 & 1 \\ -4 & 1 & 1 \\ -4 & 1 & 1 \\ | -4 & 1 & 1 \\ -4 & 1 & 1 \\ | -4 & 1 & 1 \\ -4 & 1 & 1 \\ | -4 & 1 & 1 \\ | -4 & 1 & 1 \\ | -4 & | -4 & | -4 \\ | -$$

Example :

$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$	$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}$	$\mathbf{A} = \begin{bmatrix} 0 & 2 & -1 \\ 3 & -2 & 1 \end{bmatrix}$
L7 8 9	L3 5 6	$\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$

Cofactor matrix: A cofactor refers to the number on removing the column and row of a particular element existing in a matrix.

The cofactor is always preceded by a positive (+) or negative (-) sign, depending whether the element is in a + or - position.

First, let's look at the signs of a 3 x 3 matrix:

Consider	a 3×3 matrix				
A =	$\left(egin{array}{ccccc} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{array} ight)$).			
Its cofacto	or matrix is	67			
	$\left(egin{array}{ccc} + egin{array}{ccc} a_{22} & a_{23} \ a_{32} & a_{33} \end{array} ight $	$- \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$	$\left \begin{array}{c} + \\ a_{21} \\ a_{31} \end{array} \right $	$\left \begin{array}{c} a_{22} \\ a_{32} \end{array} \right $	
C =	$-ig {a_{12}\ a_{13}\ a_{32}\ a_{33}}ig $	$+ igg egin{array}{ccc} a_{11} & a_{13} \ a_{31} & a_{33} \end{array}$	$\left \begin{array}{c} - \right _{a_{31}}^{a_{11}}$	$\begin{vmatrix} a_{12} \\ a_{32} \end{vmatrix}$,	
		12		82	

Example:

Example: Find the cofactor matrix of **A** given that
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 1 & 0 & 6 \end{bmatrix}$$
.

Solution: First find the cofactor of each element.

$$A_{11} = \begin{vmatrix} 4 & 5 \\ p & 6 \end{vmatrix} = 24 \qquad A_{12} = -\begin{vmatrix} 0 & 5 \\ 1 & 6 \end{vmatrix} = 5 \qquad A_{13} = \begin{vmatrix} 0 & 4 \\ 1 & 0 \end{vmatrix} = -4$$

$$A_{21} = -\begin{vmatrix} 2 & 3 \\ p & 6 \end{vmatrix} = -12 \qquad A_{22} = \begin{vmatrix} 1 & 3 \\ 1 & 6 \end{vmatrix} = 3 \qquad A_{23} = -\begin{vmatrix} 1 & 2 \\ 1 & 0 \end{vmatrix} = 2$$

$$A_{31} = \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = -2 \qquad A_{32} = -\begin{vmatrix} 1 & 3 \\ 0 & 5 \end{vmatrix} = -5 \qquad A_{33} = \begin{vmatrix} 1 & 2 \\ 0 & 4 \end{vmatrix} = 4$$
The cofactor matrix is thus
$$\begin{vmatrix} 24 & 5 & -4 \\ -12 & 3 & 2 \\ -2 & -5 & 4 \end{vmatrix}$$

Example Cofactor Matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 1 & 0 & 6 \end{bmatrix} \quad \text{cofactor matrix} = \begin{bmatrix} 24 & 5 & -4 \\ -12 & 3 & 2 \\ -2 & -5 & 4 \end{bmatrix}$$
$$A_{11} = \begin{vmatrix} 4 & 5 \\ 0 & 6 \end{vmatrix} = 24 \quad A_{12} = -\begin{vmatrix} 0 & 5 \\ 1 & 6 \end{vmatrix} = 5 \quad A_{13} = \begin{vmatrix} 0 & 4 \\ 1 & 0 \end{vmatrix} = -4$$
$$A_{21} = -\begin{vmatrix} 2 & 3 \\ 0 & 6 \end{vmatrix} = -12 \quad A_{22} = \begin{vmatrix} 1 & 3 \\ 1 & 6 \end{vmatrix} = 3 \quad A_{23} = -\begin{vmatrix} 1 & 2 \\ 1 & 0 \end{vmatrix} = 2$$
$$A_{31} = \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = -2 \quad A_{32} = -\begin{vmatrix} 1 & 3 \\ 0 & 5 \end{vmatrix} = -5 \quad A_{33} = \begin{vmatrix} 1 & 2 \\ 0 & 4 \end{vmatrix} = 4$$